Two New Iridoid Glucosides from Clerodendrum serratum

Hui YANG^{1,2}, Bei JIANG¹, Zhi NA¹, Yun Pin GUO³ and Han Dong SUN¹*

¹Laboratory of Phytochemistry, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204

²Chemistry Department of the College of Life Science and Chemistry, Yunnan University, Kunming 650091

³Chemistry Group, Kunming Medical College, Kunming 650031

Abstract: Two new iridoid glucosides, serratoside A and serratoside B, were isolated from the aerial parts of *Clerodendrum serratum var. amplexifolium* Moldenke. Their structures were elucidated by spectral and chemical methods.

Keywords: Clerodendrum serratum, Verbenaceae, iridoid glucoside, serratoside A, serratoside B.

In our previous paper^{1,2}, we have reported some constituents from the extract of C. Serratum var. amplexifolium Moldenke. Further investigation on the same plant led to the isolation of two new iridoid glucosides, serratoside A (1) and serratoside B (2). In this communication, we describe the structural elucidation of the two new compounds.

Figure 1

Serratoside A (1) (**Figure 1**) was obtained as brown gum. The positive FABMS established a molecular formula of $C_{25}H_{28}O_{11}$ for **1** (m/z 505 [M+1]⁺), which was confirmed by its high resolution positive FABMS (found [M+1]⁺ 505.1714, calcd. 505.1710) and ¹H and ¹³C NMR spectra (**Table 1** and **2**). The UV (MeOH) [λ_{max} (log ϵ): 203.5 (5.15), 216.5 (5.13), 222.5 (5.14), 243.5 (5.13), 256.5 (5.09), 278 (5.20) nm] and the IR (v: 3391 br., 1712, 1675, 1624, 1450, 1355, 1276, 1171, 859 cm⁻¹) showed the

presence of the hydroxyl groups, carbonyl group, carboxyl group, α , β -unsaturated skeleton and aromatic ring. Especially, the UV (λ_{max} : 222.5 nm), IR (ν : 1624 cm⁻¹) and ¹H NMR spectral data for H-3 (δ 7.48, s) indicated the existence of a 4-substituted enol ether system of iridoid³. Inspection of ¹H and ¹³C NMR spectra of **1** showed that the signals were in good agreement with those of ugandoside⁴ except for the additional *trans*-cinnamoyloxy group [δ_{H} 6.68 (1H, d, J = 16.0 Hz, H- β), 7.88 (1H, d, J = 16.0 Hz, H- γ), 7.35 (1H, br.s, H-4"), 7.36 (2H, br.d, J = 7.5 Hz, H-3" and 5") and 7.59 (2H, br.d, J = 7.5 Hz, H-2" and 6"); δ_{C} 166.76 (s, C- α), 118.89 (d, C- β), 145.33 (d, C- γ), 134.95 (s, C-1"), 128.68 (d, C-2" and 6"), 129.40 (d, C-3" and 5") and

Table 1 The ¹H NMR spectral data of **1** and **2** in pyridine- d_5 (400MHz, δ in ppm from TMS and J in Hz)

Proton	1	2
1α	6.38 d, 2.3	
1β		5.83 d, 7.5
3	7.48 s	7.50 s
6α	3.56 dd, 13.2, 7.6	2.88 br.d, 17.3
6β	2.60 dd, 13.0, 8.3	3.27 br.d, 17.3
7		5.78 br.s
7α	5.76 t, 5.8	
9β	3.62 d, 2.3	3.47 d, 7.5
10a	5.28 br.s	5.11 d, 13.9
10b	5.49 br.s	5.22 d, 13.9
11	9.45 s	9.50 s
1'	5.37 d, 7.8	5.43 d, 7.8
2'	4.05 t, 8.3	4.14 t, 8.0
3', 4'	4.23 m	4.28 m
5'	4.02 m	4.03 m
6'a	4.55 dd, 11.8, 2.0	4.54 dd, 11.8, 2.0
6'b	4.37 dd, 11.8, 5.5	4.35 dd, 11.8, 5.7
2", 6"	7.59 br.d, 7.5	7.55 d, 6.4
3", 5"	7.36 br.d, 7.5	7.34 d, 6.4
4"	7.35 br.s	7.33 s
β	6.68 d, 16.0	6.67 d, 16.0
γ	7.88 d, 16.0	7.86 d, 16.0

130.81 (d, C-4")]. Exhaustive acid hydrolysis of **1** afforded glucose and *trans*-cinnamic acid (identified by comparing with authentic samples in TLC). All conclusions mentioned were demonstrated by the ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY, HMQC and HMBC spectra of **1**, and some significant ${}^{1}\text{H}$ - ${}^{13}\text{C}$ long range correlations between H-7 with C- α , H-1 with C-1' and H-1' with C-1 could be clearly observed from the HMBC (**Figure 2**). Thus, it was confirmed that the *trans*-cinnamoyloxy group and glucosyl unit were attached to C-7 and C-1 positions of iridoid moiety, respectively. Meanwhile, the glycosidic linkage was shown to be β by the coupling constant (J = 7.8 Hz) of the anomeric proton signal. The relative stereochemistry of **1** was determined by the NOESY spectrum (**Figure 3**) and comparison of the ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR data and coupling constants of **1** with those of ugandoside. Accordingly, the structure of serratoside A (**1**) was elucidated to be

7β-cinnamoyloxy-ugandoside.

Figure 2 The key ¹H-¹³C long-range correlations observed in 1 and 2

Figure 3 Some principal results observed in the NOESY spectra of 1 and 2

Serratoside B (2) (Figure 1) was also obtained as a brown gum. It had the same molecular formula $(C_{25}H_{28}O_{11})$ as 1, which was also confirmed by the high resolution positive FABMS (found [M+1]+ 505.1666, calcd. 505.1709) and ¹H and ¹³C NMR spectral data (Table 1 and 2). The spectral data of ¹H, ¹³C NMR, IR and UV were quite similar to those of serratoside A (1). Moreover, exhaustive acidic hydrolysis of 2 gave glucse and trans-cinnamic acid, too. These facts indicated that they had similar structures. The main differences between 2 and 1 were that the signals at δ_C 73.70 [δ_H 5.76 (1H, t, J = 5.8 Hz)] due to a methine bearing an oxygen and δ_C 114.38 [δ_H 5.28 (1H, br.s) and 5.49 (1H, br.s)] assigned to an exomethly ene in 1 were replaced by those at $\delta_{\rm C}$ 129.30 [$\delta_{\rm H}$ 5.78 (1H, br.s)] arising from an olefinic bond group and δ_C 62.82 [δ_H 5.11 (1H, d, J = 13.9 Hz) and 5.22 (1H, d, J = 13.9 Hz)] owing to a methylene connected to oxygen in 2, respectively. It means that the exocyclic olefinic bond ($\Delta^{8,10}$) in 1 was converted to the cyclic one $(\Delta^{7, 8})$ in 2. Meanwhile, the *trans*-cinnamoyloxy group was moved from the C-7 position of 1 to the C-10 position of 2. These presumptions were demonstrated by the ¹H-¹H COSY, HMQC and HMBC spectra of 2. Especially, the connectivity of the trans-cinnamoyloxy group was determined by the HMBC spectrum (Figure 2). In

addition, according to the NOESY spectrum (**Figure 3**), the H-1 of **2** was in the β -orientation instead of the α -orientation. Comparison of the coupling constant between H-1 and H-9 of **2** (J = 7.5 Hz) with that of **1** (J = 2.3 Hz) gave strong evidence to confirm the orientation of H-1. Therefore, the structure of serratoside B (**2**) was established as **2** shown in **Figure 1**.

Table 2 The 13 C NMR spectral data of **1** and **2** in pyridine- d_5 (100.6 MHz, δ in ppm from TMS)

С	1	2	C	1	2
1	97.27 (d)	99.64 (d)	3'	79.13 (d)	78.99 (d)
3	162.77 (d)	161.46 (d)	4'	71.52 (d)	71.52 (d)
4	123.98 (s)	126.59 (s)	5'	78.39 (d)	78.41 (d)
5	70.39 (s)	75.34 (s)	6'	62.70 (t)	62.82 (t)
6	42.91 (t)	46.76 (t)	1"	134.95 (s)	134.96 (s)
7	73.70 (d)	129.30 (d)	2", 6"	128.68 (d)	128.66 (d)
8	146.57 (s)	136.71 (s)	3", 5"	129.40 (d)	129.30 (d)
9	52.94 (d)	57.21 (d)	4"	130.81 (d)	130.68 (d)
10	114.38 (t)	62.82 (t)	α	166.76 (s)	166.63 (s)
11	190.58 (s)	190.57 (s)	β	118.89 (d)	118.76 (d)
1'	100.82 (d)	101.21 (d)	·γ	145.33 (d)	145.19 (d)
2'	74.63 (d)	74.80 (d)	•		

Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (Grant No. 29772039).

References

- 1 H. Yang, A. J. Hou, B. Jiang, Z. W. Lin and H. D. Sun, Acta Botanica Yunnanica (submitted).
- 2 H. YANG, J. WANG, A. J. HOU, Z. W. LIN, H. D. SUN, *Chinese Chemical Letters* (submitted).
- 3 I. Calis, M. Hosny and A. Yuruker, *Phytochemistry*, **1994**, *37*, 1083.
- 4 G. Jack and H. Rimpler, Phytochemistry, 1983, 22, 1729.

Received 17 September 1999